NAG Toolbox for MATLAB

f08tc

1 Purpose

f08tc computes all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form

$$Az = \lambda Bz$$
, $ABz = \lambda z$ or $BAz = \lambda z$,

where A and B are symmetric, stored in packed format, and B is also positive-definite. If eigenvectors are desired, it uses a divide-and-conquer algorithm.

2 Syntax

3 Description

f08tc first performs a Cholesky factorization of the matrix B as $B = U^{T}U$, when **uplo** = 'U' or $B = LL^{T}$, when **uplo** = 'L'. The generalized problem is then reduced to a standard symmetric eigenvalue problem

$$Cx = \lambda x$$
,

which is solved for the eigenvalues and, optionally, the eigenvectors; the eigenvectors are then backtransformed to give the eigenvectors of the original problem.

For the problem $Az = \lambda Bz$, the eigenvectors are normalized so that the matrix of eigenvectors, z, satisfies

$$Z^{\mathrm{T}}AZ = \Lambda$$
 and $Z^{\mathrm{T}}BZ = I$,

where Λ is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem $ABz = \lambda z$ we correspondingly have

$$Z^{-1}AZ^{-T} = \Lambda$$
 and $Z^{T}BZ = I$,

and for $BAz = \lambda z$ we have

$$Z^{\mathrm{T}}AZ = \Lambda$$
 and $Z^{\mathrm{T}}B^{-1}Z = I$.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D 1999 *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia URL: http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: itype – int32 scalar

Specifies the problem type to be solved.

[NP3663/21] f08tc.1

f08tc NAG Toolbox Manual

itype = 1

$$Az = \lambda Bz$$
.
itype = 2
 $ABz = \lambda z$.
itype = 3
 $BAz = \lambda z$.

2: **jobz – string**

If jobz = 'N', compute eigenvalues only.

If jobz = 'V', compute eigenvalues and eigenvectors.

Constraint: jobz = 'N' or 'V'.

3: **uplo – string**

If uplo = 'U', the upper triangles of A and B are stored.

If $\mathbf{uplo} = 'L'$, the lower triangles of A and B are stored.

Constraint: uplo = 'U' or 'L'.

4: n - int32 scalar

n, the order of the matrices A and B.

Constraint: $\mathbf{n} \geq 0$.

5: ap(*) – double array

Note: the dimension of the array **ap** must be at least $\max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The n by n symmetric matrix A, packed by columns.

More precisely,

if **uplo** = 'U', the upper triangle of A must be stored with element A_{ij} in $\mathbf{ap}(i+j(j-1)/2)$ for $i \le j$;

if **uplo** = 'L', the lower triangle of A must be stored with element A_{ij} in $\mathbf{ap}(i+(2n-j)(j-1)/2)$ for $i \ge j$.

6: bp(*) – double array

Note: the dimension of the array **bp** must be at least $\max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The upper or lower triangle of the symmetric matrix B, packed by columns.

More precisely,

if **uplo** = 'U', the upper triangle of *B* must be stored with element B_{ij} in **bp**(i+j(j-1)/2) for $i \le j$;

if **uplo** = 'L', the lower triangle of B must be stored with element B_{ij} in **bp**(i + (2n - j)(j - 1)/2) for $i \ge j$.

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

ldz, work, lwork, iwork, liwork

f08tc.2 [NP3663/21]

5.4 Output Parameters

1: ap(*) - double array

Note: the dimension of the array **ap** must be at least $\max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The contents of ap are destroyed.

2: bp(*) - double array

Note: the dimension of the array **bp** must be at least $\max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The triangular factor U or L from the Cholesky factorization $B = U^{T}U$ or $B = LL^{T}$, in the same storage format as B.

3: $\mathbf{w}(*)$ – double array

Note: the dimension of the array w must be at least $max(1, \mathbf{n})$.

If info = 0, the eigenvalues in ascending order.

4: z(ldz,*) – double array

The first dimension of the array z must be at least max $(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

If jobz = 'V', then if info = 0, z contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows:

if **itype** = 1 or 2,
$$Z^{T}BZ = I$$
; if **itype** = 3, $Z^{T}B^{-1}Z = I$.

If jobz = 'N', z is not referenced.

5: info - int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

$$info = -i$$

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: itype, 2: jobz, 3: uplo, 4: n, 5: ap, 6: bp, 7: w, 8: z, 9: ldz, 10: work, 11: lwork, 12: iwork, 13: liwork, 14: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

info > 0

f07gd or f08gc returned an error code:

- \leq **n** if **info** = i, f08gc failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero;
- > **n** if **info** = **n** + i, for $1 \le i \le$ **n**, then the leading minor of order i of B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

[NP3663/21] f08tc.3

f08tc NAG Toolbox Manual

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and vectors may be large, although when the diagonal elements of B differ widely in magnitude the eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section 4.10 of Anderson et al. 1999 for details of the error bounds.

The example program below illustrates the computation of approximate error bounds.

8 Further Comments

The total number of floating-point operations is proportional to n^3 .

The complex analogue of this function is f08tq.

9 Example

```
itype = int32(2);
jobz = 'No vectors';
uplo = 'U';
n = int32(4);
ap = [0.24;
     -0.11;
     0.42;
     0.79;
     -0.25;
     -0.16;
     0.63;
     0.48;
     -0.03];
bp = [4.16;
     -3.12;
     5.03;
     0.56;
     -0.83;
     0.76;
     -0.1;
     1.09;
     0.34;
[apOut, bpOut, w, z, info] = f08tc(itype, jobz, uplo, n, ap, bp)
apOut =
    0.1373
    0.9473
   -0.2325
   -0.7098
   -2.5252
   -1.2164
   -0.6202
    0.4797
   -0.9277
   -0.0114
bpOut =
    2.0396
   -1.5297
    1.6401
    0.2746
   -0.2500
    0.7887
   -0.0490
    0.6189
    0.6443
    0.6161
```

f08tc.4 [NP3663/21]

f08tc

[NP3663/21] f08tc.5 (last)